利用客体插层剂原位插层到二维层状材料,不仅能够在原子尺度上实现对材料电子结构和本征物理性质的调控,提高材料的载流子浓度、迁移率、磁学、光学和热学等物理性质,而且还有望拓展其在光电子器件、能源存储与转化以及光电催化等方面的应用.近年来,探索合适的方法制备具有不同类型和功能的二维插层新结构已逐渐成为材料科学、物理、化学等领域的研究热点.由于独特的电子结构和优异的性能,二维层状过渡金属氧族化合物材料作为插层主体的插层结构受到了研究人员的广泛关注.本文选取过渡金属氧族化合物为对象,综述了不同种类插层剂原位插层合成方法(如碱金属插层、非碱金属原子插层、聚合物插层、有机小分子插层、还原氧化石墨烯插层),提出了通过系列方法影响层间作用力以及利用晶体各向异性等工艺来实现新型插层结构的原位合成策略,并展望了新型插层材料在电、磁、光、热、锂电、催化等众多领域的潜在应用前景.
Different types of intercalated agents can be in-situ intercalated into two-dimensional(2D) layered transition metal oxides and chalcogens(TMOCs), which can engineer its electronic structure at the atomic scale and tune its intrinsic physical and chemical properties(i.e. carrier concentration and mobility, magnetic, optical, and other properties). Such intercalations provide a facile way to create new types of multifunctional materials, thus largely extend 2D material's applications for opto-electronic devices, energy storage and conversion, photoelectrocatalysis, etc. Recently, many efforts have been focused on seeking suitable synthesis routes to achieve different types of intercalated nanomaterials. Here, we concisely reviewed the recent development on TMOC-based intercalations produced by various intercalated agents in-situ intercalating. The synthetic strategy of alkali metal and non-alkali metal intercalation, polymer intercalation, small organic molecules intercalation and reduced graphene oxide intercalation were mainly reviewed. Through affecting the interlayer interactions and the crystal anisotropy can realize the strategy of in-situ intercalated layered materials.