由于卫星转菠的 GPS 接收装置的高效和精确 IGS 轨道和钟产品的可获得性,零差别的运动学的精确轨道决心(邮政部门) 被生产了是在为狮子座卫星的轨道决心的一个新有效方法。零差别的运动学的邮政部门,仅仅从卫星转菠的 GPS 接收装置基于 GPS 大小,不依靠力量模特儿和轨道设计。从这个观点,运动学的邮政部门对在很低的高度的地球观察卫星合适,例如捣烂,优雅和 GOCE,等等。这份报纸首先考察基本零差别的 GPS 观察模型。然后,一个修改数据质量控制计划被提出。最后,一个块明智的最少的广场算法,首先把参数分开成几个组然后由消除和背替换解决参数,为运动学的轨道决心被讨论并且求婚。与上述算法,我们开发了运动学的邮政部门软件解决对一个星期优雅观察合适的轨道。有出版快速的科学轨道(RSO ) 的比较显示那,用我们决定轨道的途径,在光线的方向的精确性能为 GRACE-B 为优雅 A,和 35 厘米完成 34 厘米。
Thanks to the high performance of the spaceborne GPS receiver and the availability of precise IGS orbit and clock products, zero-difference kinematic precise orbit determination (POD) has been turned out to be a new effective method in orbit determination for the LEO satellites. Zero-difference kinematic POD, which is based on the GPS measurements only from the spacebome GPS receiver, does not depend on the force models and orbit design. From this point of view, kinematic POD is suitable for the Earth observation satellites at very low altitudes, such as CHAMP, GRACE and GOCE, etc. This paper first reviews the basic zero-difference GPS observation model. Then a modified data quality control scheme is put forward. Finally, a block-wise least squares algorithm, which first separates the parameters into several groups and then solves the parameters by elimination and back-substitution, is discussed and proposed for the kinematic orbit determination. With the above algorithms, we developed kinematic POD software to solve the orbit suitable for one-week GRACE observations. Comparisons with the published Rapid Science Orbit (RSO) indicate that, using our approach to determine the orbit, the accuracy in the radial direction can achieve 3--4 cm for GRACE-A, and 3 --5 cm for GRACE-B.