位置:成果数据库 > 期刊 > 期刊详情页
基于EMD和有向因子图的航天器故障诊断
  • ISSN号:0367-6234
  • 期刊名称:《哈尔滨工业大学学报》
  • 时间:0
  • 分类:TP273[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]哈尔滨工业大学航天学院,哈尔滨150001
  • 相关基金:国家自然科学基金资助项目(60874054)
中文摘要:

为了消除噪声对提取传感器信号中故障特征的影响,同时在系统模型不精确条件下,描述故障在系统部件间的传播方式.本文提出了一种基于经验模态分解(EMD)和有向因子图(DFG)的故障诊断方法.对传感器信号进行经验模态分解得到的内部模态函数(IMF),提出采用能量做为其零点区间包含噪声成分的评价指标,基于信号内部模态函数的区块能量消除其噪声成分.对无法精确建模的物理系统,提出使用有向因子图描述系统组成部件间的因果关系,应用概率推理实现故障诊断.通过对航天器电源系统供电模块的实例分析,验证了方法的有效性.

英文摘要:

To solve the problem of noise elimination in fault feature extraction of sensor signal and describing fault propagation under model uncertainty,this article presents a novel fault diagnosis approach based on empirical mode decomposition(EMD) and directed factor graph(DFG).The EMD method is used to decompose the sensor output signal into a number of intrinsic mode function(IMF) components,a block energy criterion based on the signal samples between two adjacent zero-crossings of IMF is proposed to distinguish the useful signal from noise.Directed factor graph is used to model the cause-effect relations between system components,and as the basis for fault diagnosis through probabilistic reasoning under the model uncertainty.A power supply module of a spacecraft power system is provided as case study to show the feasibility and validity of the proposed method.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《哈尔滨工业大学学报》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国工业和信息化部
  • 主办单位:哈尔滨工业大学
  • 主编:冷劲松
  • 地址:哈尔滨市南岗区西大直街92号
  • 邮编:150001
  • 邮箱:
  • 电话:0451-86403427 86414135
  • 国际标准刊号:ISSN:0367-6234
  • 国内统一刊号:ISSN:23-1235/T
  • 邮发代号:14-67
  • 获奖情况:
  • 2000年获黑龙省科技期刊评比一等奖,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:27329