堆石料在外力作用下极易发生破碎,基于单颗粒破碎机制,依靠生成的颗粒簇单元克服刚性圆形颗粒模拟堆石料颗粒不能破碎的缺陷,采用线性接触模型建立堆石料颗粒破碎的数值模型。模拟室内平面应变试验,分析堆石料在整个加载过程中内部接触力、微裂纹和各种能量的变化,探讨堆石料颗粒破碎的内在机制。研究表明:颗粒簇生成的数值试样通过内部黏结力断裂更能真实反映堆石料颗粒破碎;堆石料颗粒破碎首先发生在大粒径和接触力较大的颗粒,并逐步向最大压应力方向发展,最终试件内部产生剪切破裂滑动面;在整个加载过程中,堆石料的剪切微裂纹数大于拉伸微裂纹数,颗粒破碎主要以剪切破坏为主,峰值点附件产生大量颗粒破碎;小变形情况下,总输入能以弹性应变能的形式储存在颗粒簇内部颗粒间接触,大变形情况下,弹性应变能以储存-释放的形式转换其他形式耗能,并导致其他形式耗能增加。研究成果可为研究堆石坝体变形提供参考。
Rockfill materials are easily broken under external force. Based on the single particle crushing mechanism, the indestructible defect is simulated in particle of rockfill materials depending on the generated particles cluster units to overcome rigid circular particle. A broken numerical model for particle of rockfill materials is established by adopting the linear contact model. Indoor plane strain tests are simulated. The internal contact force, micro crack and a variety of energy changes in rockfill materials are analyzed under the loading process. The breakage mechanism for particle of rockfill materials is investigated. The results show that the numerical sample generated by particle clusters can more truly reflect the breakage of particle of rockfill materials through the internal bond strength fracture. The breakage of particle of rockfill materials occurs first in the large particle size and contact force larger particles, then gradually to direction of the maximum pressure, finally shear fracture sliding plane is generated. The number of shear micro crack is greater than that of tensile micro crack throughout the whole loading process, the particle breakage mainly is shear failure, and a lot of particle breakage is produced near the peak point. The total input energy stores in particle cluster in the form of elastic strain energy under small deformation. The elastic strain energy can be converted to other forms of energy dissipation in the form of storage release under large deformation. The research results can provide reference for the study on the deformation of rockfill dams.