概述了晶体塑性模拟在面心立方金属等通道转角挤压中的典型应用。结果表明,这些模拟能够较好地解释仅基于宏观变形行为所不能解释的晶粒细化效率的路径相关性和亚结构方向性问题,能够满意地预测不同加工条件下材料的晶粒取向稳定性和织构演变。应用表明,晶体塑性模拟是探索晶粒变形的晶体学特性以及相关行为的有效手段,而这些特性常常被现有宏观理论所忽略或错误地解释。
Some applications of crystal plasticity modeling in equal channel angular extrusion(ECAE) of face-centered cubic metals were highlighted.The results show that such simulations can elucidate the dependency of grain refinement efficiency on processing route and the directionality of substructure development,which cannot be explained by theories that consider only the macroscopic deformation behavior.They can also capture satisfactorily the orientation stability and texture evolution under various processing conditions.It is demonstrated that crystal plasticity models are useful tools in exploring the crystallographic nature of grain deformation and associated behavior that are overlooked or sometimes erroneously interpreted by existing phenomenological theories.