在G3XMP2//B3LYP/6-311+G(3df,2p)水平上对CH3SO3裂解反应的机理进行了研究,获得了6条通道(10条路径),并构建了其势能剖面.同时采用单分子反应理论计算了各个通道在温度200—3000K区间的速率常数.研究结果表明,在计算温度范围内,CH3SO3裂解反应的主产物为P1(CH3+SO3),产物P2(CH3O+SO3)和P3(HCHO+HOSo)仅在温度大于3000K时对总产物有贡献,而产物P4(CHSO2+H2O)、P5(CH2SO3+H)和P6(CHSO3+H2)贡献相对较少.将裂解反应总的速率常数拟合为ktotal=1.40x1012To015exp(-7831.58/T.此外,根据统计热力学原理,预测了所有物种的生成焓(△fh298,△fHok)、熵(S289K)和热容(Gp1298—2000K),计算的结果与实验值较接近.
The mechanism and kinetics of unimolecular decomposition of CH3SO3 are studied at the G3XMP2//B3LYP/6-311 +G(3df,2p) level of theory. Six possible dissociation channels and potential energy surface for the CH3SO3 decomposition are investigated. Rate constants over the temperature range of 200-3000 K are calculated using Rice-Ramsperger-KasseI-Marcus (RRKM) theory. The results indicate that the product PI(CH3+SO3) is dominant between 200-3000 K. Products P2(CH30+SO2) and P3(HCHO+ HOSO) increase significantly at higher temperatures (〉3000 K). Products P4(CHSO2+H2O), P5(CH2SO3+H), and P6(CHSO3+ H2) show little formation in the temperature range (200-3000 K). The total rate constant can be expressed as ktotal=1.40 x 1012T0.15exp(-7831.58/T). Thermodynamic properties including enthalpies of formation (A,H~BK, A,H0k), entropies e ($298K), and heat capacities (Cp1 298-2000 K) of all the minima and transition states are predicted from statistical mechanics, and found to be in good agreement with the available experimental values.