位置:成果数据库 > 期刊 > 期刊详情页
基于Co—training方法的车辆鲁棒检测算法
  • ISSN号:0254-0037
  • 期刊名称:《北京工业大学学报》
  • 时间:0
  • 分类:TH273[机械工程—机械制造及自动化]
  • 作者机构:[1]北京工业大学电子信息与控制工程学院,北京100124
  • 相关基金:国家自然科学基金资助项目(61079001);国家自然科学基金青年基金资助项目(60904069);教育部高等学校博士学科点专项科研基金资助项目(20111103120015).
中文摘要:

针对复杂交通场景车辆检测算法自适应能力差的问题,提出了基于Co—training半监督学习方法的车辆鲁棒检测算法.首先,针对手工标记的少量样本,分别训练基于Haar—like特征的AdaBoost分类器和基于HOG(histograms of oriented gradients)特征的SVM(support vector machines)分类器,使其具有一定的识别能力;然后,基于Co—training半监督学习框架,将利用2种算法进行分类得到的新样本分别加入到对方的样本库中,增加训练样本数量,再次进行分类器的训练.由于这2类特征具有冗余性,各自检测出的正负样本包含对方漏检和误检的图像.由于样本数的增加,再次训练所得到的新分类器的鲁棒性得到了很大提高,能更加准确地检测出车辆,而且由算法对未标记样本进行分类标记,不再需要人为标记,提高了车辆检测算法的自适应能力.

英文摘要:

To improve the adaptability of existing vehicle detection algorithms in complex traffic circumstances, a robust detection algorithm based on co-training from semi-supervised learning methods was proposed. First, according to a small number of humanly labeled samples, two classifiers were trained, which were AdaBoost based on Haar-like features and the SVM (support vector machines) based on HOG (histograms of oriented gradients) features, respectively, so that both of them had some identification ability. Second, on the basis of co-training from semi-supervised learning framework, the new samples gained from the two algorithms above were added to mutual sample sets to increase the number of training samples, and the train was repeated. Due to the redundancy these two features had, the detected positive and negative samples would contain the images which were missed out or falsely detected mutually. Because of the increasing number of samples, the robustness of the new re-training classifiers has been greatly improved so that the classifiers can detect the vehicles accurately. Besides, there will be no need to mark artificially, but to classify and mark the unlabeled samples by the algorithms. Therefore, it can highly improve the adaptability of vehicle detection algorithm.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《北京工业大学学报》
  • 中国科技核心期刊
  • 主管单位:北京市教委
  • 主办单位:北京工业大学
  • 主编:卢振洋
  • 地址:北京市朝阳区平乐园100号
  • 邮编:100124
  • 邮箱:xuebao@bjut.edu.cn
  • 电话:010-67392535
  • 国际标准刊号:ISSN:0254-0037
  • 国内统一刊号:ISSN:11-2286/T
  • 邮发代号:2-86
  • 获奖情况:
  • 中国高等学校自然科学学报优秀学报二等奖,北京市优秀期刊,华北5省市优秀期刊,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:11924