位置:成果数据库 > 期刊 > 期刊详情页
基于判别模型的视频前景/阴影自动分割算法
  • ISSN号:1003-6059
  • 期刊名称:《模式识别与人工智能》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]杭州电子科技大学计算机科学学院,杭州310018, [2]浙江大学计算机科学与技术学院,杭州310027, [3]浙江工业职业技术学院计算机科学系,绍兴312000
  • 相关基金:国家自然科学基金项目(No.60473106,No.60333010)、国家教育部博士点基金项目(No.20060335114)和浙江省教育厅项目(No.G20030433)资助
中文摘要:

活动阴影是影响视频目标分割准确性的重要因素,有效检测与消除活动阴影是视频分割的一大难题.本文提出一种基于判别模型的前景/阴影自动分割算法.它能在室内户外多种环境中对活动阴影进行检测和消除.算法在像素级别上对背景、阴影以及前景进行建模,利用二维条件随机场对这些分布模型进行约束,通过概率图模型推断算法求出全局最优的分割结果.在实验中采用各种环境的视频数据对本文算法的有效性进行测试,并与其他分割算法的结果进行比较,证明本文算法的误分率较低.

英文摘要:

Moving cast shadows are factors affecting segmentation quality. Efficient shadow detection and removal is a difficult problem in video segmentation. A method based on discriminative model for video foreground and shadow segmentation is proposed. It has capability of shadow detection and removal under different scenes. The proposed algorithm models background, shadows and foreground at pixel levels. These models are constrained by using 2-dimensional conditional random fields. Inference algorithm of probabilistic graphical models is adopted to obtain globally optimal segmentation results. The experimental results demonstrate the validity of the proposed algorithm, and the results are compared with other algorithms by using outdoor and indoor video data.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《模式识别与人工智能》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会 中国自动化学会
  • 主办单位:国家智能计算机研究开发中心 中国科学院合肥智能机械研究所
  • 主编:郑南宁
  • 地址:安徽省合肥市蜀山湖路350号中国科学院合肥智能机械研究所
  • 邮编:230031
  • 邮箱:bjb@iim.cas.cn
  • 电话:0551-5591176
  • 国际标准刊号:ISSN:1003-6059
  • 国内统一刊号:ISSN:34-1089/TP
  • 邮发代号:26-69
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:10169