位置:成果数据库 > 期刊 > 期刊详情页
A Connectome Computation System for discovery science of brain
  • ISSN号:2095-9273
  • 期刊名称:Science Bulletin
  • 时间:2015.1
  • 页码:86-95
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程] TV64[水利工程—水利水电工程]
  • 作者机构:[1]Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China, [2]Magnetic Resonance Imaging Research Center, Institute ofPsychology, Chinese Academy of Sciences, Beijing 100101,China, [3]Laboratory for Functional Connectome and Development,Institute of Psychology, Chinese Academy of Sciences,Beijing 100101, China, [4]Department of Applied and Computational Mathematics, College of Applied Sciences, Beijing University of Technology, Beijing 100124, China, [5]Faculty of Psychology, Southwest University,Chongqing 400715, China
  • 相关基金:This work was partially supported by the National Basic Research Program (973) of China (2015CB351702), the National Natural Science Foundation of China (81220108014, 81471740, 81201153, 81171409, and 81270023), the Key Research Program (KSZD-EW-TZ-002) and the Hundred Talents program of the Chinese Academy of Sciences. Dr. Xiu-Xia Xing acknowledges the Beijing Higher Education Young Elite Teacher Project (No. YETP1593). Dr. Zhi Yang acknowledges the Foundation of Beijing Key Laboratory of Mental Disorders (2014JSJB03) and the Outstanding Young Researcher Award from Institute of Psychology, Chinese Academy of Sciences (Y4CX062008). We thank all members of the Laboratory for Functional Connectome and Development, Institute of Psychology at CAS and the attendees of the first CCS education course for their helpful feedback and suggestions for the improvement of the CCS.
  • 相关项目:人脑功能连接组生命周期发展轨线研究
中文摘要:

就象 genomics 一样,大脑 connectomics 很快在全世界成为了很国家的大脑工程的一个核心部件。在这些工程的雄心勃勃的目的以外,基本挑战是对到我的一条有效、柔韧、可靠、容易使用的管道的需要如此的大神经科学数据集。这里,我们介绍一计算 pipelinenamely 为在有多模式的磁性的回声成像技术的 macroscale 的人的大脑 connectomes 的发现科学的 Connectome 计算系统(CCS ) 。CCS 与包括清洗的数据和预处理的三水平的层次结构被设计,印射的单个 connectome 和 connectome 采矿,和知识发现。几个功能的模块被嵌进这个层次实现质量控制过程,可靠性分析和 connectome 可视化。我们表明在公开可得到的数据集之上基于的 CCS 的实用程序, NKIRockland 样品,描出越过自然寿命的著名大规模神经网络的标准轨道(685 ? 岁) 。CCS 经由 GitHub (https://github.com/zuoxinian/CCS ) 和我们的实验室网络站点(http://lfcd.psych.ac.cn/ccs.html ) 被使自由地可得到到公众在人的大脑 connectomics 的地里在发现科学便于进步。

英文摘要:

Much like genomics, brain connectomics has rapidly become a core component of most national brain projects around the world. Beyond the ambitious aims of these projects, a fundamental challenge is the need for an efficient, robust, reliable and easy-to-use pipeline to mine such large neuroscience datasets. Here, we introduce a computational pipeline--namely the Connectome Compu- tation System (CCS)-for discovery science of human brain connectomes at the macroscale with multimodal magnetic resonance imaging technologies. The CCS is designed with a three-level hierarchical structure that includes data cleaning and preprocessing, individual connectome mapping andconnectome mining, and knowledge discovery. Several functional modules are embedded into this hierarchy to implement quality control procedures, reliability analysis and connectome visualization. We demonstrate the utility of the CCS based upon a publicly available dataset, the NKI- Rockland Sample, to delineate the normative trajectories of well-known large-scale neural networks across the natural life span (6-85 years of age). The CCS has been made freely available to the public via GitHub (https://github.com/ zuoxinian/CCS) and our laboratory's Web site (http://lfcd. psych.ac.cn/ccs.html) to facilitate progress in discovery science in the field of human brain connectomics.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《科学通报:英文版》
  • 主管单位:中国科学院
  • 主办单位:中国科学院
  • 主编:周光召
  • 地址:北京东黄城根北街16号
  • 邮编:100717
  • 邮箱:csb@scichina.com
  • 电话:010-64665775 64019820 64034134
  • 国际标准刊号:ISSN:2095-9273
  • 国内统一刊号:ISSN:10-1298/N
  • 邮发代号:80-214
  • 获奖情况:
  • 首届国家期刊奖
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,美国工程索引,美国地质文献预评数据库,美国剑桥科学文摘,美国科学引文索引(扩展库),美国生物科学数据库,英国动物学记录,英国高分子图书馆,日本日本科学技术振兴机构数据库,英国英国皇家化学学会文摘
  • 被引量:5399