位置:成果数据库 > 期刊 > 期刊详情页
最小差异采样的主动学习图像分类方法
  • ISSN号:1000-436X
  • 期刊名称:通信学报
  • 时间:2014.1.1
  • 页码:138-145
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]苏州大学智能信息处理及应用研究所,江苏苏州215006, [2]美国阿肯色中央大学计算机科学系,阿肯色州康威72035-0001
  • 相关基金:国家自然科学基金资助项目(61003054,61170020);江苏省科技支撑计划基金资助项目(BE2012075)江苏省高校自然科学研究基金资助项目(13KJB520021)
  • 相关项目:Deep Web敏感聚合信息保护方法研究
中文摘要:

针对委员会成员模型投票不一致性的度量问题,提出了一种基于最小差异采样的主动学习图像分类方法。该方法首先基于标注样本集的重采样结果构建决策委员会,然后利用投票概率较高的2个类别的概率值的差异来度量未标注样本集每个样本的投票不一致性,选择概率差异最小的样本交由人工专家标注,如此迭代更新分类器。将新方法与EQB算法及nEQB算法在多个数据集上进行实验对比,实验结果表明所提方法能够有效提高分类的准确率。还对组成决策委员会的成员模型的数目设置进行了分析和讨论,结果表明在相同的成员模型数目时所提方法比nEQB算法更为有效。

英文摘要:

Aiming at the problem of measuring the voting disagreement of committee, a minimal difference sampling method for image classification was proposed. It selects the sample with the minimal difference of two highest class probabilities voted by committee. The experimental results show that this method effectively enhances the classification accuracy compared with EQB and nEQB. Furthermore, the influence of the number of models in the decision-making committee was analyzed and discussed. The experimental results show that the proposed method always outperforms nEQB with the same number of models.

同期刊论文项目
期刊论文 49 会议论文 8 专利 6
同项目期刊论文
期刊信息
  • 《通信学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国通信学会
  • 主编:杨义先
  • 地址:北京市丰台区成寿寺4路11号邮电出版大厦8层
  • 邮编:100078
  • 邮箱:
  • 电话:010-81055478 81055481
  • 国际标准刊号:ISSN:1000-436X
  • 国内统一刊号:ISSN:11-2102/TN
  • 邮发代号:2-676
  • 获奖情况:
  • 信息产业部通信科技期刊优秀期刊二等奖
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:25019