本文研究在Dirichlet边界条件下分数阶椭圆型方程(-△)^su=λf(x,u)的解的多重性.利用非线性项,在零点处和无穷远处的渐近性态,在Ambrosetti.Rabinowitz条件不满足的情形,应用山路定理和适当的截断技巧,对于所有的参数A〉O得到一个正解和一个负解.
This paper deals with the multiplicity of solutions for some fractional elliptic equation (-A)Su = ),f(x, u) under Dirichlet boundary condition. By using the asymptotic behavior of the nonlinearity f at zero and infinity without Ambrosetti-Rabinowitz growth condition, we apply mountain pass theorem and suitable truncation to obtain the existence of one positive solution and one negative solution for all the parameter A 〉 0.