利用电磁悬浮和快淬实验研究Cu60Co30Cr10合金在亚稳不混溶区的液相分离和快速凝固特征。结果表明,合金的显微组织为富(Co,Cr)相分布在富Cu相基体中,且富(Co,Cr)相颗粒的形状和大小随着冷却速率的变化而有明显的区别。在悬浮凝固条件下冷却速率较低,富(Co,Cr)相较粗大,有明显的聚集粗化趋势,富(Cu)相中有大量富(Co,Cr)相枝晶。而在快淬凝固条件下富(Co,Cr)相明显细化,富(Cu)相中未发现富(Co,Cr)相枝晶形成,这可能与较高的冷却速率、较大的过冷度和较高的界面张力有关。
Metastable liquid phase separation and rapid solidification in a metastable miscibility gap were investigated on the Cu60Co30Cr10 alloy by using the electromagnetic levitation and splat-quenching.It is found that the alloy generally has a microstructure consisting of a(Co,Cr)-rich phase embedded in a Cu-rich matrix,and the morphology and size of the(Co,Cr)-rich phase vary drastically with cooling rate.During the electromagnetic levitation solidification processing the cooling rate is lower,resulting in an obvious coalescence tendency of the(Co,Cr)-rich spheroids.The(Co,Cr)-rich phase shows dendrites and coarse spheroids at lower cooling rates.In the splat quenched samples the(Co,Cr)-rich phase spheres were refined significantly and no dendrites were observed.This is probably due to the higher cooling rate,undercooling and interface tension.