研究了铌酸锂波导静态傅里叶变换微光谱仪分辨率的影响因素,并在此基础上提出了一种采用端面反射铌酸锂波导结构提高微光谱仪光谱分辨率的方法。该方法容许在减小铌酸锂波导静态傅里叶变换微光谱仪尺寸的同时,使两干涉臂间最大光程差增大1倍,从而使其光谱分辨率实现倍增。采用商业化铌酸锂波导电光调制器构建了一个傅里叶变换光谱仪原理样机,并对样机在不同波长下的光谱分辨率进行了测量,结果指出对调制器加载端面反射结构后获得的光谱分辨率是加载端面反射结构前的2倍,与理论分析结果完全一致。这种光波导端面反射结构制作工艺简单,易于实现,是一种提高集成光波导静态傅里叶微光谱仪分辨率的有效手段。
Miniature Fourier transform spectrometer (FTS) has attracted considerable interest because of its important appli-cation in spaceborne spectroscopy and as a portable analytical tool for rapid on-site chemical/biochemical detection. In a previous paper, a stationary miniature FTS constructed with an electro-optic (EO) modulator of a LiNbO3 (LN) waveg-uide Mach-Zehnder interferometer (MZI) containing push-pull electrodes was demonstrated. This stationary miniature FTS is operated in the near-infrared region with either nonlinear or linear scanning of the modulating voltage. The simple and mirrorless structure renders the device compact, vibration resistant, and cost-effective. However, the spectral resolution of the proposed prototype FTS was not satisfactory due to the limited optical pathlength difference (OPD), thereby limiting the device application. To improve its spectral resolution, the factors affecting the spectral resolution of the LN waveguide-based FTS is investigated in this paper. Findings show that the spectral resolution is inversely proportional to the maximum OPD, which is proportional to the length of the EO modulating region. A simple method for two-fold enhancement of the spectral resolution of the FTS is proposed based on the end-face reflection in LN waveg-uide interferometer. With the end-face reflection geometry the guided mode can propagate back and forth in the LN waveguide, making the mode passing through the EO modulating region twice and consequently leading to two times enhancement of the OPD. Therefore, the end-face reflection geometry enables to double the maximum OPD of the interferometer without increasing the device size and thus to offer the device a two-fold enhanced spectral resolution according to the equation for FTS resolution. Two prototypes of FTS with and without the end-face reflection structure are prepared using the same commercial LN waveguide EO modulator. The spectral resolutions in terms of the full-width at half maximum (FWHM) at different