位置:成果数据库 > 期刊 > 期刊详情页
基于最大频繁项集挖掘的微博炒作群体发现方法
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]数学工程与先进计算国家重点实验室,郑州450002
  • 相关基金:国家自然科学基金(No.61309007);国家高技术研究发展计划(863)(No.2012AA012902).
中文摘要:

近年来微博炒作账户异军突起,采用违规手段开展网络公关活动,严重扰乱了正常的互联网秩序。传统的炒作账户发现主要采用特征分析方法,忽视了炒作账户的组织性和策划性,难以发现隐蔽性高的炒作账户。针对以上问题,充分考虑到炒作账户共同参与微博炒作的群体特性,将炒作群体发现问题转化为挖掘最大频繁项集问题,提出了一种基于最大频繁项集挖掘的炒作群体发现方法,能够找出多次共同参与炒作微博传播的账户群体。为了提高最大频繁项集挖掘的效率,结合研究背景以及事务数据库的特点,提出了一种基于迭代交集的最大频繁项集发现算法,采用基于二分查找的最大频繁候选项集筛选策略对事务数据库进行缩减,并利用多种方式减少事务间取交集的次数。最后通过实验对IIA算法的性能进行了评估,并在真实的新浪微博数据集上验证了炒作群体发现方法的有效性,实验结果表明利用该方法发现的炒作群体准确率高于90%,而且能发现传统特征分析方法难以识别的隐蔽炒作账户。

英文摘要:

In recent years, the hype accounts in Microblogs rise as a new force, using illegal means to carry out the network public relations activities, which has seriously disturbed the normal order of the Internet. The traditional detection of hype accounts mainly uses methods based on feature analysis, ignoring that hype accounts are strongly organizational and planning,which is difficult to find the concealed ones. In view of the above problems, fully considering the group characteristics that hype accounts often participate in hype microblogs together, the problem of hype groups detection is transformed into the problem of mining maximum frequent itemsets, and a method based on mining maximum frequent itemsets for the detection of hype groups is proposed, which can find accounts groups who have participated in hype microblogs together in many times. According to the research background and the characteristics of transaction database, a new algorithm based on iterative intersection is proposed to improve the efficiency of mining maximum frequent itemsets, which uses a selection strategy based on binary search algorithm to reduce the transaction database, and uses a variety of ways to reduce the times of intersection between transactions. Finally, the performance of IIA algorithm is evaluated by experiments, and experiments are conducted on a real dataset from Sina Weibo, the experiments results show that this method can find highly concealed hype accounts that can’t be identified by traditional methods based on feature analysis, with the accuracy rate of up to 90%.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887