位置:成果数据库 > 期刊 > 期刊详情页
一种缓解分类面交错的样本点扩散方法
  • ISSN号:1002-137X
  • 期刊名称:《计算机科学》
  • 时间:0
  • 分类:TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:广东工业大学计算机学院,广州510006
  • 相关基金:国家863计划重大项目(2013AA01A212),国家自然科学基金资助项目(61272067,61104156,61402118),广东省自然科学基金(9451009001002777)资助.
中文摘要:

固定的相似性度量使得学习器无法结合先验信息揭示数据本身固有的统计规律,对于分类面交错严重的数据集,难以取得较好的学习效果。为了缓解分类面交错,提高分类准确度,将边界和样本点扩散结合起来,通过统计样本标签信息和位置信息得到边界点,以边界点为中心选取合适的控制函数对周边样本点进行扩散,使得分类面更加清晰,从而提高分类算法的精度。在多个分类面交错的数据集上,使用不同分类器验证所提方法,结果表明,其准确率有不同程度的提升。与3种经典的有监督度量学习方法进行比较,实验结果表明所提方法适合处理交错程度高的数据集,而且能有效提升SVM的性能。

英文摘要:

The fixed similarity measurement makes learner difficult to reveal the inherent statistical rules of the data it- self with the priori information, and it is difficult to get good effect for the data set with a staggered classification. In or- der to improve the classification accuracy of the data set with a staggered classification, this paper combined the bounda- ry and sample diffusion method. The method applies the statistical sample label information and position information to obtain boundary point,which is treated as the center. Then we selected appropriate control function to spread neighbo- ring sample points to make the classification more clear, so as to enhance the learning accuracy. Different classifiers are used to validate the method,and the accuracy of the proposed method is improved in different degrees. Compared with three classical supervised distance metric learning method, the experimental results show that this method is suitable for processing high degree of interleaving data sets,and can effectively improve the performance of SVM.

同期刊论文项目
期刊论文 16 会议论文 3
同项目期刊论文
期刊信息
  • 《计算机科学》
  • 北大核心期刊(2011版)
  • 主管单位:重庆西南信息有限公司(原科技部西南信息中心)
  • 主办单位:重庆西南信息有限公司(原科技部西南信息中心)
  • 主编:陈国良
  • 地址:重庆市渝北区洪湖西路18号
  • 邮编:401121
  • 邮箱:jsjkx12@163.com
  • 电话:023-63500828
  • 国际标准刊号:ISSN:1002-137X
  • 国内统一刊号:ISSN:50-1075/TP
  • 邮发代号:78-68
  • 获奖情况:
  • 2001年重庆市优秀期刊,2004年第三届重庆市优秀科技期刊,2005年重庆市优秀期刊编辑部,2010年第六届重庆市期刊综合质量考核"十佳科技期刊",2012年重庆市出版专项资金报刊资助项目(重庆市新...,2013年重庆市出版专项资金重点学术期刊资助项目(...,2014年重庆市出版专项资金期刊资助项目(重庆市文...,2015年"中国国际影响力优秀学术期刊"
  • 国内外数据库收录:
  • 波兰哥白尼索引,美国乌利希期刊指南,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:41227