位置:成果数据库 > 期刊 > 期刊详情页
基于二维小波变换的独立分量分析方法及其在图像分离中的应用
  • ISSN号:1009-5896
  • 期刊名称:《电子与信息学报》
  • 时间:0
  • 分类:TN911.6[电子电信—通信与信息系统;电子电信—信息与通信工程] TN911.73[电子电信—通信与信息系统;电子电信—信息与通信工程]
  • 作者机构:[1]上海大学通信与信息工程学院,上海200072
  • 相关基金:国家自然科学基金(60472103)资助课题
中文摘要:

该文提出了一种新的基于二维小波变换的独立分量分析方法。研究表明,当各个源信号的概率密度分布相同时,自然梯度算法的稳态误差与源信号峭度的平方成反比。因此,对峭度更大的小波域高频子图像进行独立分量分析可以获得更高的分离精度。同时,高频子图像的大小为源图像的1/4,计算量大大减小,因此算法收敛的速度更快。最后,将该方法用于混合图像的盲分离,通过一系列实验,证实该方法是有效的。

英文摘要:

In this paper, a kind of new independent Component Analysis (ICA) method based on 2-dimensional wavelet transform is proposed. According to the research, the steady-state error of the Natural Gradient Algorithm (NGA) is inverse proportional to the quadratic of the kurtosis of the sources when the probability distribution function of each source is the same. In addition, the kurtosis of the detail coefficients in wavelet domain is always bigger than that of the original images, so the separation precision of ICA method based on 2-dimensional wavelet transform is higher than that of the traditional ICA method. Furthermore, the size of the sub-image in 2-dimensional wavelet domain is a quarter of the source image, so the convergence speed of the proposed method is faster. Finally, this method is used to separate the mixed images. A set of experiments in different situations is done and the simulation results show that the proposed method is effective.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《电子与信息学报》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院电子学研究所 国家自然科学基金委员会信息科学部
  • 主编:朱敏慧
  • 地址:北京市北四环西路19号
  • 邮编:100190
  • 邮箱:jeit@mail.ie.ac.cn
  • 电话:010-58887066
  • 国际标准刊号:ISSN:1009-5896
  • 国内统一刊号:ISSN:11-4494/TN
  • 邮发代号:2-179
  • 获奖情况:
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:24739