位置:成果数据库 > 期刊 > 期刊详情页
一种基于谱聚类的共指消解方法
  • ISSN号:1003-0077
  • 期刊名称:《中文信息学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]复旦大学计算机科学与工程系,上海200433
  • 相关基金:国家自然科学基金资助项目(60503070);技术发展高校资助项目(GH0742002)
中文摘要:

该文针对中文共指消解的具体任务,提出采用谱聚类的方法进行共指消解。首先,在待消解项对上抽取特征,使用最大熵模型判断两个待消解项存在共指关系的概率;然后,以此概率值作为相似度进行谱聚类;最后,得到若干实体,实现共指消解。该方法能从全局的角度进行实体划分,有效地提高准确率。在ACE 2007标准数据集上的Diagnostic实验结果表明该方法的ACE Value比baseline方法有了2.5%的提高,Unweighted Precision值有5.4%的提高。

英文摘要:

This paper presents a novel method to implement coreference resolution. This method is based on spectral clustering. A maximum entropy model is first used to get the coreference probability of mention pairs with extracted features. The probabilities of mention pairs are then used to construct the similarity matrix for spectral clustering. Entities are generated according to the clustering cuts. This method can divide entities with a global view, which effectively improves precision. Experiments on ACE 2007 dataset show that the ACE Value of this method is 2.5% higher than that of baseline on Diagnostic task, and 5.4% higher in Unweighted Precision.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中文信息学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国中文信息学会 中国科学院软件研究所
  • 主编:孙茂松
  • 地址:北京海淀中关村南四街4号中科院软件所
  • 邮编:100190
  • 邮箱:jcip@iscas.ac.cn
  • 电话:010-62562916
  • 国际标准刊号:ISSN:1003-0077
  • 国内统一刊号:ISSN:11-2325/N
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:9136