应用微板毒性分析方法,以污染物对淡水发光菌——青海弧菌(Vibrio.qinghaiensissp.)067的发光抑制为毒性指标,分别测定了对氯苯酚(P1)、邻氯苯酚(P2)、2,4-二氯苯酚(P3)、间甲苯酚(P4)、对甲苯酚(P5)、间硝基苯酚(P6)、2-硝基苯酚(P7)、对甲苯胺(P8)、P9、邻硝基苯胺(P10)、邻氯苯胺(P11)、间氯苯胺(P12)对067的毒性.结果表明,12种污染物的剂量一效应关系除了P11可用Logit模型描述外,其余11种污染物均可用Weibull模型有效描述.由模型估算的半数效应浓度负对数值(pECso)分别为3.43,2.81,3.66,2.83,2.99,3.15,3.20,2.52,2.36,3.66,2.81,2.89,其对Q67的毒性大小顺序为(P3=P10)〉P1〉P7〉P6〉P5〉P12〉P4〉(P11=P2)〉P8〉P9.分别设计浓度为各自EClo和EC50的2个等效应浓度比混合物和12个均匀设计浓度比混合物进行微板毒性实验,并应用剂量加和(DA)模型与独立作用(IA)模型建立由单-毒物的剂量-效应参数来预测混合物联合毒性的方法.结果表明,在实验浓度范围内各混合物毒性均能用DA模型精确预测.
Using the microplate toxicity analysis, the toxicities of 7 phenolic and 5 aniline derivatives (PADs) inhibiting the luminescence of freshwater photobacteria, Vibrio-qinghaiensis sp--Q67, were determined, respectively. The doseresponse data of all PADs but o-chloroaniline (Pll) can be effectively described by Weibull function. The pECs0 values of 12 PADs, p-chlorophenol(Pl), o-chloropheno (P2), 2,4-dichlorophenol(P3), m-cresol(P4), p-cresol(P5), m-nitrophenol(P6), o-nitrophenol(PT), p-methylaniline (PS), o-methyl-aniline(P9), o-nitroaniline(P 10), o-chloroaniline(P 11 ), and p-chloroaniline(P 12), estimated from the optimal dose-response curves described by Weibu11 or Logit function (Pll) were 3.43, 2.81, 3.66, 2.83, 2.99, 3.15, 3.20, 2.52, 2.36, 3.66, 2.81, and 2.89 (unit of concentration: mol/L), respectively, which revealed that the toxic order among 12 PADs was (P3 = P10) 〉 P1 〉 P7 〉 P6 〉 P5 〉 P12 〉 P4 〉 (Pll -- P2) 〉 P8 〉 P9. 14 mixtures consisted of all 12 PADs were constructed using the effect-equivalent concentration (.ECso or EClo) method and uniform design. The toxicities of the mixtures were determined using the same procedure as the individual PAD compound and the dose-response data were then fitted to Weibull or Logit function. At the same time, a dose addition (DA) and independent action (IA) models were employed to predict the joint toxicities of the mixtures from the dose-response information of various individual PAD compounds. The results showed that the toxicities of mixtures can be accurately evaluated by the DA model.