位置:成果数据库 > 期刊 > 期刊详情页
基于SAD与UKF-Mean Shift的主动目标跟踪
  • ISSN号:1003-6059
  • 期刊名称:《模式识别与人工智能》
  • 时间:0
  • 分类:TP242[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]中南大学信息科学与工程学院,长沙410083
  • 相关基金:国家自然科学基金重大专项项目(No.90820302)、国家自然科学基金面上项目(No.60805027)和国家博士点基金项目(No.200805330005)资助
中文摘要:

针对复杂场景下动态目标难以准确分割以及目标难以准确定位的问题,提出将绝对差值和(SAD)方法、无迹卡尔曼滤波(UKF)和Meanshift算法相结合的混合自主跟踪动态目标的方法.首先,采用SAD方法获相邻两帧的视差信息,利用视差实现动态目标的检测,并依此建立目标的核直方图描述模型和状态空间模型,然后UKF算法对状态空间进行滤波估计,最后采用Meanshift算法精确定位目标.实验结果表明该方法不仅能有效检测场景的动态目标,同时还能获得目标的运动信息.文中所提出的基于UKF—Meanshift的跟踪策略与相关算法相比,体现出较好的跟踪效果与时间性能.

英文摘要:

Aiming at the problems in accurate motion detection and tracking location under complex scene, an automatic object tracking method combined sum of absolute difference (SAD) and Mean shift with unscented Kalman filter (UKF) is proposed. Firstly block matching method based on SAD is used to estimate the displacement between current frame and successive frame. Then the disparity cues are utilized to detect the moving object automatically and build the object model and state-space model for following tracking task. Finally Mean shift with UKF is employed to filter and estimate the state of the object and locate the object in subsequence image frame. The experimental results show that the proposed moving object detection method effectively detects moving objects in scene and acquires the motion information of objects. Compared with the related methods, the proposed tracking strategy based on UKF-Mean shift has better tracking results and time property.

同期刊论文项目
期刊论文 52 会议论文 1 获奖 1
同项目期刊论文
期刊信息
  • 《模式识别与人工智能》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会 中国自动化学会
  • 主办单位:国家智能计算机研究开发中心 中国科学院合肥智能机械研究所
  • 主编:郑南宁
  • 地址:安徽省合肥市蜀山湖路350号中国科学院合肥智能机械研究所
  • 邮编:230031
  • 邮箱:bjb@iim.cas.cn
  • 电话:0551-5591176
  • 国际标准刊号:ISSN:1003-6059
  • 国内统一刊号:ISSN:34-1089/TP
  • 邮发代号:26-69
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:10169