A new non-linear bending-torsional coupled model for double-row planetary gear set was proposed, and planet’s eccentricity error, static transmission error, and time-varying meshing stiffness were taken into consideration. The solution of differential governing equation of motion is determined by applying the Fourier series method. The behaviors of dynamic load sharing characteristics affected by the system parameters including gear eccentricities error, ring gear’s supporting stiffness, planet’s bearing stiffness, torsional stiffness of first stage carrier and input rotation rate were investigated qualitatively and systematically, and sun gear radial orbits at first and second stage were explored as well. Some theoretical results are summarized as guidelines for further research and design of double-row planetary gear train at last.
A new non-linear bending-torsional coupled model for double-row planetary gear set was proposed, and planet's eccentricity error, static transmission error, and time-varying meshing stiffness were taken into consideration. The solution of differential governing equation of motion is determined by applying the Fourier series method. The behaviors of dynamic load sharing characteristics affected by the system parameters including gear eccentricities error, ring gear's supporting stiffness, planet's bearing stiffness, torsional stiffness of first stage carrier and input rotation rate were investigated qualitatively and systematically, and sun gear radial orbits at first and second stage were explored as well. Some theoretical results are summarized as guidelines for further research and design of double-row planetary gear train at last.