主要讨论了满足不等式|Tf(x)|≤C∫Rn|f(y)/x-y|ndy的次线性算子T与BMO函数生成的多线性交换子Tb在齐型Morrey空间上的有界性,得到了在Lp(Rn)有界的情况下,Tb是Mqp(Rn)有界的.并由此得出在Lp(Rn)有界的情况下,当δ=n-1/2时,Bochner-Riesz算子的多线性交换子Bδb和极大多线性交换子Bδb*也是Mqp(Rn)有界的。
The boundness of multi-linear commutators Tb in homogeneous Morrey space which are generated by sub-linear operator T and BMO function is discussed in this paper.We obtain the boundness Mqp (Rn) of Tb.We also get the Mpq (Rn) boundness of Bochner-Riesz multi-linear commutators Bbδ and maximal multi-linear commutators Bbδ,with δ =n-1/2.