运用热流固耦合理论,在岩石破裂过程分析系统(Rock Failure Process Analysis,RFPA)的基础上实现了温度-渗流-应力-损伤(Thermo-hydro-mechanical-damage,THMD)的多场耦合数值模型,并以此为工具进行了水工结构中温度场随渗流和应力而变化的规律研究。结果表明,水的流动导致的热量迁移现象可以用于分析水工建筑物的水温异常,并可将其作为结构是否出现了渗漏的一种监测手段。对破坏过程中温度变化规律的数值试验研究表明:在初始加载阶段,试样中的原生裂隙随着应力的不断增加而闭合,导致透水能力以及渗流速度的降低,渗流对温度场的影响作用也随之而逐渐减小;但当试样中的应力水平达到其峰值强度时,损伤急剧增加并形成了渗漏通道,渗流速度增大,试样顶端的温度也急剧升高。数值模拟得到的温度场随渗流速度和方向、应力、破坏三因素的变化规律有助于完善温度探漏的相关理论。
A numerical model considering the thermal,seepage,stress and damage in quasi-brittle materials has been proposed on the basis of Rock Failure Process Analysis (RFPA) code.Simulation of the temperature varying with water flow indicates that water flow greatly influence the temperature distribution,which can be used to analyze the temperature anomaly in hydraulic structures,and detect whether the structures has formed seepage passages or not.Furthermore,the failure process of a quasi-brittle numerical sample under the Therom-hydro-mechanical-damage (THMD) coupling condition indicates that the microcracks in the sample close at the beginning of loading,resulting in the decrease of water velocity with load increasing.However,as the stress level up to the peak strength of the sample,damage will increase rapidly and form a water passage,causing a sudden change of temperature distribution.Therefore,the change of temperature distribution with stress state,failure and water velocity can be used to detect whether hydraulic structures formed leakage passages or not.