位置:成果数据库 > 期刊 > 期刊详情页
基于三阶段DEA模型的中国工业企业创新效率评价
  • ISSN号:1002-1566
  • 期刊名称:数理统计与管理
  • 时间:2011
  • 页码:846-855
  • 分类:F424.6[经济管理—产业经济] O212[理学—概率论与数理统计;理学—数学]
  • 作者机构:[1]苏州大学商学院,江苏苏州215021, [2]大连理工大学管理与经济学部,辽宁大连116023
  • 相关基金:国家自然科学基金(项目编号:71003023);教育部高等学校博士学科点专项科研基金(项目编号:200801411133);大连理工大学人文社科基金(项目编号:DUTHS2008406).
  • 相关项目:基于群落生态学的高校科技创新系统演化机理、识别与调控研究
作者: 沈能|潘雄锋|
中文摘要:

为了消除环境变量和随机误差对创新效率值的影响,运用Fried等提出的三阶段DEA模型,对19982007年中国工业企业创新效率状况进行了实证分析,研究结果表明,中国工业企业创新效率确实受到经济发展水平、外资活动、政府扶持激励政策和市场结构等环境变量和随机因素的影响。在剔除环境和随机因素影响后,1998—2007年间中国各地区工业企业创新效率呈现出下降的趋势,其中,东部的上海、广东、海南和西部的青海四个地区比较稳定地处于前沿面相对效率位置,结合各地区创新效率与R&D投入水平,可以将我国各地区划分为相对效率高投入、相对效率低投入、高效率高投入、高效率低投入、低效率高投入和低效率低投入等六种模式,并根据各种模式有针对性地提出了相关对策建议。

英文摘要:

In order to exclude the influence of environmental variables and random error on the innovation efficiency, this paper uses the three-stage DEA model that proposed by Fred etc. to investigate the industrial enterprise's innovation efficiency in China in 1998-2007. The results indicate, the industrial enterprise's innovation efficiency in China has been affected by environmental variables and random factors such as the economy development level, FDI, government inventive policies and market structure. After excluding the influence of environmental variables and random factors, the industrial enterprise's innovation efficiency in various provinces are decreasing in 1998-2007. the Shanghai, Guangdong, Hainan Province in East area and Qinghai Province in West area stay on the efficiency frontier steadily. Considering the industrial enterprise's innovation efficiency and R&D input, the authors divide 30 provinces in China into six types: relative efficiency and high input, relative efficiency and low input, high efficiency and high input, high efficiency and low input, low efficiency and high input as well as low efficiency and low input, and put forward some countermeasures for the different types.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《数理统计与管理》
  • 北大核心期刊(2011版)
  • 主管单位:中国科协
  • 主办单位:中国现场统计研究会
  • 主编:程维虎
  • 地址:中国科学院应用教学所内
  • 邮编:100190
  • 邮箱:sltj@amt.ac.cn
  • 电话:010-62651341
  • 国际标准刊号:ISSN:1002-1566
  • 国内统一刊号:ISSN:11-2242/O1
  • 邮发代号:82-69
  • 获奖情况:
  • 国内外数据库收录:
  • 日本日本科学技术振兴机构数据库,中国中国人文社科核心期刊,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:13661