应用自适应LWDG方法求解三维双曲守恒律方程组,与传统的二阶RKDG方法相比,该方法具有计算量小和精度高的特点.给出一种自适应策略,其中均衡折中策略适用于非相容四面体网格.将二维情形下的后验误差指示子推广到三维双曲守恒律方程组中,数值实验证明了方法的有效性.
We present a Lax-Wendroff discontinuous Galerkin (LWDG) method combining with adaptive mesh refinement (AMR) to solve three-dimensional hyperbolic conservation laws. Compared with Runge-Kutta discontinuous finite element method (RKDG) the method has higher efficiency. We give an effective adaptive strategie. Equidistribution strategy is easily implemented on nonconforming tetrahedral mesh. Error indicator is introduced to solve three-dimensional Euler equations. Numerical experiments demonstrate that the method has satisfied numerical efficiency.