位置:成果数据库 > 期刊 > 期刊详情页
多子群入侵杂草优化算法研究及应用
  • ISSN号:1000-3428
  • 期刊名称:《计算机工程》
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]皖西学院信息工程学院,安徽六安237012, [2]哈尔滨工业大学卫星技术研究所,哈尔滨150080
  • 相关基金:国家自然科学基金资助项目(61075049)
中文摘要:

针对入侵杂草优化算法(1w0)进化后期种群多样性、优势个体易陷入局部极值的问题,提出一种基于K一均值聚类的多子群入侵杂草优化算法(K—MSIWO)。该算法利用K-均值聚类算法将杂草种群分为3个子群,通过种内和种间竞争策略建立个体之间、子群之间的协同进化关系,提高杂草种群的多样性。当算法的收敛速度下降时,对种群中早熟的个体采用随机扰动的变异策略,帮助其跳出局部极值。基准函数测试结果表明,将该算法用于二阶和高阶系统的PID控制器参数整定,与遗传算法的整定结果相比,系统超调量分别下降33.2%和50%,具有较好的寻优精度和一致性。

英文摘要:

Aiming at the problems of standard Invasive Weed Optimization(IWO) algorithm such as population diversity declining in the late evolution and easily trapping into local extremum, an improved algorithm, Multi Sub-population Invasive Weed Optimization algorithm based on K-means clustering(K-MSIWO), is proposed. In K-MSIWO, the weed population is divided into three sub-populations by using K-means clustering. The co-evolutionary relationship of individual and individual, sub-population and sub-population is established through intraspecific and interspecific competition to increase the diversity of the weed population. When the convergence velocity of algorithm begins falling, the random perturbation mutation strategy is adopted for the premature individual to help them out of local minimum. Experimental results on several benchraark functions show that the modified algorithm is applied to PID control parameter tuning of second-order and high-order system, the overshoots of the systems are reduced by 33.2% and 50% respectively compared with GA approaches, and K-MSIWO has better accuracy and consistency.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华东计算技术研究所 上海市计算机学会
  • 主编:游小明
  • 地址:上海市桂林路418号
  • 邮编:200233
  • 邮箱:ecice06@ecict.com.cn
  • 电话:021-64846769
  • 国际标准刊号:ISSN:1000-3428
  • 国内统一刊号:ISSN:31-1289/TP
  • 邮发代号:4-310
  • 获奖情况:
  • 1999~2000、2001~2002年度信息产业部优秀期刊奖,2003-2004、2005-2006年度信息产业部电子精品科技...,2007-2008、2009-2010年度工业和信息产业部电子精...,012年度中国科技论文在线优秀期刊一等奖,2013年度中国科技论文在线优秀期刊二等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),波兰哥白尼索引,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:84139