利用重排的方法找到了H-p空间的一类函数,这类函数的H-p范数和L-p范数是等价的(0〈P≤1).对于每一个f∈L-p(Rn),存在一个函数g∈H-p(Rn)满足其分布函数相等df=dg,并且||g||L-p≤||g||H-p≤C-p||g||L-p.另外,还介绍了一种构造H-p空间的L∞-原子的方法.
With the help of rearrangement, this paper finds one class of functions in H-p(Rn)(O 〈 p ≤ 1) whose HP-norms and L-p-norms are equivalent. More precisely, for each f∈L-p(Rn), there exists a function g E HP(Rn) satisfying df=dg,并且||g||L-p≤||g||H-p≤C-p||g||L-p. Moreover, this paper also introduces a method to construct an L∞-atom of H-p(Rn).