Two regularity criteria for 3D Navier-Stokes equations in a bounded domain
- 时间:0
- 分类:O357.1[理学—流体力学;理学—力学] O174.56[理学—数学;理学—基础数学]
- 作者机构:[1]Department of Applied Mathematics, Nanjing Forestry University, Nanjing 210037, China, [2]Department of Mathematics, Nanjing University, Nanjing 210093, China, [3]Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan
- 相关基金:Acknowledgements Fan was supported by the National Natural Science Foundation of China (Grant No. 11171154); Li was supported by the National Natural Science Foundation of China (Grant Nos. 11271184, 11671193) and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
关键词:
STOKES方程, 有界域, 正则性, 三维, 判据, 不可压缩, 导热系数, q系统, 3D incompressible Navier-Stokes equations, Boussinesq system,regularity criterion
中文摘要:
我们为 3D 证明二是新整齐标准在一个围住的领域的不可压缩的海军司烧方程。我们的结果也为 3D Boussinesq 系统赞成零热传导性。
英文摘要:
We prove two new regularity criteria for the 3D incompressible Navier-Stokes equations in a bounded domain. Our results also hold for the 3D Boussinesq system with zero heat conductivity.