位置:成果数据库 > 期刊 > 期刊详情页
一种基于高斯混合模型的快速水平集图像分割方法
  • ISSN号:1006-3080
  • 期刊名称:《华东理工大学学报:自然科学版》
  • 时间:0
  • 分类:TP209.7[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:华东理工大学信息科学与工程学院,上海200237
  • 相关基金:国家自然科学基金(61371150)
中文摘要:

水平集方法(LSM)图像分割的本质是求解一个随时间变化的偏微分方程,而使用变分法求解此水平集方程(LSE)往往要耗费过多的计算时间。为了减少算法的运行时间,提出了一种快速水平集图像分割算法。该算法在模糊聚类水平集方法(FCM-LSM)的基础上使用高斯混合模型(GMM)改造其隶属度损失函数,并利用离散网格Boltzmann方法(LBM)求解水平集方程。实验结果表明:本文提出的算法无论是在执行效率上还是在分割效果上都优于传统方法,证明了算法的可行性。

英文摘要:

The level set method(LSM)for image segmentation is used to solve a time-varying partial differential equation,which may require too much calculation time by using the calculus of variation method.Aiming at the problem,this paper proposes a fast level set method for image segmentation.Basing on fuzzy clustering level set method(FCM-LSM),the proposed algorithm utilizes Gaussian mixture models(GMM)to modify the membership loss function.And then,the lattice Boltamann method(LBM)is used to solve the level set equation.Experimental results show that the proposed algorithm is effective in efficiency and segmentation results.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《华东理工大学学报:自然科学版》
  • 北大核心期刊(2011版)
  • 主管单位:教育部
  • 主办单位:华东理工大学
  • 主编:刘红来
  • 地址:上海梅陇路130号
  • 邮编:200237
  • 邮箱:ecustxbbzz@ecust.edu.cn
  • 电话:021-64252666
  • 国际标准刊号:ISSN:1006-3080
  • 国内统一刊号:ISSN:31-1691/TQ
  • 邮发代号:4-382
  • 获奖情况:
  • 2001年被国家新闻出版总署评为"中国期刊方阵科技...,2002年获"第五届全国石油和化工行业优秀期刊二等奖",2004年获"全国高校优秀科技期刊二等奖",2006年荣获"首届中国高校优秀科技期刊奖"以及"第...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:10083