位置:成果数据库 > 期刊 > 期刊详情页
基于最小生成树的并行分层聚类算法
  • ISSN号:1000-7180
  • 期刊名称:《微电子学与计算机》
  • 时间:0
  • 分类:TP301[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]湖南工程学院,湖南湘潭411101, [2]湖南大学计算机与通信学院,湖南长沙410082
  • 相关基金:国家自然科学基金项目(90715029)
中文摘要:

分层聚类技术在图像处理、入侵检测和生物信息学等方面有着极为重要的应用,是数据挖掘领域的研究热点之一.针对目前基于SIMD模型的并行分层聚类算法存在的无法解决存储冲突问题,提出一种基于最小生成树无存取冲突的并行分层聚类算法.算法使用O(p)个并行处理单元,在O(n^2/p)的时间内对n个输入数据点进行聚类,与现有文献结论进行的性能对比分析表明,本算法明显改进了现有文献的研究结果,是一种无存储冲突的并行分层聚类算法.

英文摘要:

Hierarchial clustering technology plays a very important role in image processing, intrusion detection and bioinfonnatics applications, which is one of the most extensively studied branch in data mining. Presently the parallel hierarchical algorithms based on SIMD can not process memory conflicts among different processors. To overcome this shortcomings, a new parallel algori:thm based on minimum spanning tree is proposed in this paper. The proposed algorithms can cluster n objects with O(p) processors in O(n^2/p) time, Performance comparisons show that it is the first/xu-alld hierarchical clustering algorithm algorithms without memory conflicts, and thus it is an improved result over the past researches.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《微电子学与计算机》
  • 中国科技核心期刊
  • 主管单位:中国航天科技集团公司
  • 主办单位:中国航天科技集团公司第九研究院第七七一研究所
  • 主编:李新龙
  • 地址:西安市雁塔区太白南路198号
  • 邮编:710065
  • 邮箱:mc771@163.com
  • 电话:029-82262687
  • 国际标准刊号:ISSN:1000-7180
  • 国内统一刊号:ISSN:61-1123/TN
  • 邮发代号:52-16
  • 获奖情况:
  • 航天优秀期刊,陕西省优秀期刊一等奖
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:17909