位置:成果数据库 > 期刊 > 期刊详情页
自校正解耦融合Wiener状态预报器
  • ISSN号:1671-1815
  • 期刊名称:《科学技术与工程》
  • 时间:0
  • 分类:O211.64[理学—概率论与数理统计;理学—数学]
  • 作者机构:[1]黑龙江大学自动化系,哈尔滨150080
  • 相关基金:国家自然科学基金(60374026)和黑龙江大学自动控制重点实验室基金资助
中文摘要:

对含未知模型参数和噪声统计的多传感器单输入单输出系统,用现代时间序列分析方法,基于自回归滑动平均(ARMA)新息模型的在线辨识,可得到未知模型参数和噪声统计估值器,进而在按状态分量标量加权线性最小方差最优信息融合准则下,提出了自校正分量解耦信息融合Wiener状态预报器。它实现了自校正分量解耦局部Wiener状态预报器和自校正分量解耦融合预报器。证明了它的收敛性和渐近最优性。一个目标跟踪系统的仿真例子说明了其有效性。

英文摘要:

For muhisensor single input-single output systems with unknown model parameter and noise statistics, using the modem time series analysis method, based on the on-line identification of the autoregressive average moving (ARMA) innovation model, the estimators of unknown model parameters and noise statistics can be ob- tained. Further, under the linear minimum variance optimal information fusion criterion weighted by scales for state components, a self- tuning component decoupled fused Wiener state predictor is presented. It realizes the self- tuning decoupled local Wiener predictors for components and a self-tuning decoupled fusion prediction for components. Its convergence and asymptotic optimality are proved strictly. A simulation example for a target tracking system shows its effectiveness.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《科学技术与工程》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国技术经济学会
  • 主编:明廷华
  • 地址:北京市学院南路86号
  • 邮编:100081
  • 邮箱:ste@periodicals.net.cn
  • 电话:010-62118920
  • 国际标准刊号:ISSN:1671-1815
  • 国内统一刊号:ISSN:11-4688/T
  • 邮发代号:2-734
  • 获奖情况:
  • 国内外数据库收录:
  • 中国中国科技核心期刊,中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:29478