利用CBM—CFS3模型,结合森林资源相关数据,研究辽宁省森林植被碳储量和固碳速率;并基于是否造林的两种假设情境,预测了未来辽宁省森林植被碳储量、碳密度和固碳速率的时空变化趋势.结果表明:2005年辽宁省森林植被碳储量为133.94Tg,碳密度为25.08t·hm^-2,其中,栎类的碳储量最大,刺槐碳储量最小;落叶松和阔叶林碳密度较大,油松、栎类和刺槐碳密度基本相当.全省森林植被碳密度呈东高西低的分布规律,辽东地区由于森林多为成熟林和过熟林,未来植被碳密度增加潜力不大,辽宁南部和北部的中幼龄林未来将成为植被碳密度增长的高值区.在假设未来不造林的情景下,辽宁省森林植被碳储量上升缓慢,固碳速率下降较快;在无林地造林情景下,全省森林植被碳储量、固碳速率将明显提高.说明造林在增加森林植被碳储量和碳密度、提高森林的固碳速率中起到了重要作用.
The forest vegetation carbon stock and carbon sequestration rate in Liaoning Province, Northeast China, were predicted by using Canadian carbon balance model (CBMCFS3) combining with the forest resource data. The future spatiotemporal distribution and trends of vegetation carbon storage, carbon density and carbon sequestration rate were projected, based on the two scenarios, i.e. with or without afforestation. The result suggested that the total forest vegetation carbon storage and carbon density in Liaoning Province in 2005 were 133.94 Tg and 25.08 t · hm2, respectively. The vegetation carbon storage in Quercus was the biggest, while in Robinia pseudoacacia was the least. Both Larix olgensis and broadleaved forests had higher vegetation carbon densities than oth ers, and the vegetation carbon densities of Pinus tabuliformis, Quercus and Robinia pseudoacacia were close to each other. The spatial distribution of forest vegetation carbon density in Liaoning Province showed a decrease trend from east to west. In the eastern forest area, the future increase of vegetation carbon density would be smaller than those in the northern forest area, because most of the forests in the former part were matured or over matured, while most of the forests in the later part were young. Under the scenario of no afforestation, the future increment of total forest vegeta tion carbon stock in Liaoning Province would increase gradually, and the total carbon sequestration rate would decrease, while they would both increase significantly under the afforestation scenario. Therefore, afforestation plays an important role in increasing vegetation carbon storage, carbon den sity and carbon sequestration rate.