位置:成果数据库 > 期刊 > 期刊详情页
一种用于分类的改进Boosting算法
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]江苏畜牧兽医职业技术学院,江苏泰州225300, [2]扬州大学信息工程学院,江苏扬州225009
  • 相关基金:国家自然科学基金(No.60875004);江苏省自然科学基金(No.BK2009184);江苏省高效自认科学基础研究资助项目(No.07KJB520133).
中文摘要:

提出了一种新的Boosting算法LAdaBoost。LAdaBoost算法利用局部错误率更新样本被选用于训练下一个分类器的概率,当对一个新的样本进行分类时,考虑了该样本与其邻域内的每个训练样本的近似度;另外,提出了有效邻域的概念。根据不同的组合方法,得到了两种LAdaBoost算法,即LAdaBoost-1和LAdaBoost-2。在UCI上部分实验数据集的实验结果表明,LAda.Boost算法比AdaB00st和Bagging算法更有效,且鲁棒性更好。

英文摘要:

A new Boosting algorithm named LAdaBoost is proposed, which utilizes a local error to update the probability that the instance is selected to be part of next classifier' s training set. When classifying a new instance, the similarity between the instance and each training instance in its neighborhood is taken into account. Furthermore, the concept of effective neighborhood is first given. According to different combination methods, it gets two LAdaBoost algorithms LAdaBoost-1 and LAdaBoost-2. The experimental results on several datasets available from the UCI repository demonstrate that LAdaBoost algorithms are more robust and efficient than AdaBoost and Bagging.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887