研究了非齐次线性微分方程f^(k)+D(k-1)f^(k-1)+…+Daf=F的复振荡问题,其中D0,D1,…,D(k+1),JF≠0是亚纯函数,当存在某个Ds(1≤s≤k-1)比其它Dj(j≠s)有较快增长时,得到了该微分方程亚纯解的超级的精确估计式。
In this paper ,we investigate the complex oscillation of the defferential equation f^(k)+D(k-1)f^(k-1)+…+Daf=F where D0,D1,…,D(k+1),JF≠0are meromorphic functions,when there exists a Ds(1≤s≤k-1) being of larger growth than any other Dj(j≠s) , we obtain some precise estimate of hyper - order of meromorphic solutions for the alcove equation.