对于非负整数n,设F(n)是第n个Fibonacci数.运用初等方法证明方程(x+1)/F(y)=∑kx=1[1/F(2k)]仅有正整数解(x,y)=(1,3).
For any nonnegative integer n,let F(n) denote the n th Fibonacci number.In this paper,it is proved by some elementary methods that the equation(x+1)/F(y)=∑xk=1[1/F(2k)] has only the positive integer solution(x,y)=(1,3).