提出了一种新型结构的组合式颗粒阻尼器,该阻尼器采用两层减振结构,外层为弹簧减振,内层为塑性阻尼减振。改变颗粒填充率、腔体间隙、弹簧刚度和填充颗粒材质后,研究了不同结构参数对该阻尼器减振性能的影响。结果表明:组合式颗粒阻尼器比传统的颗粒碰撞阻尼器具有更优秀的减振性能;钢球和颗粒的体积比约为1:2且弹簧刚度值为主系统刚度值的10%以下时具有最好的减振效果;改变填充颗粒材质对减振效果影响不显著。
A new kind of combined particle impact damper was proposed, in which two kinds of damping forms-via springs outside and via particle plastic deformation inside. The response of various damper components was obtained from experiments, by varying the particle packing ratio, the con- tainer clearance, the stiffness of spring, and the particle materials. The experimental results show that the combined particle impact damper has excellent damping performance, and is better than the traditional particle impact damper. The damper has the best performance when the volume ratio be- tween the steel ball and particles is about 1 : 2 and the spring stiffness is about 10% of the main sys- tem stiffness. Changing particle materials has little influence on the damping performance.