位置:成果数据库 > 期刊 > 期刊详情页
含缺失成分的矩阵的广义低秩逼近及其在图像处理中的应用
  • ISSN号:1003-9775
  • 期刊名称:《计算机辅助设计与图形学学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]北京交通大学计算机与信息技术学院信息科学研究所,北京100044, [2]中国科学院自动化研究所模式识别国家重点实验室,北京100190
  • 相关基金:国家自然科学基金(61375042,61273290);国家“八六三”高技术研究发展计划(2014AA015202);中央高校基本科研业务费专项基金(2013JBZ003);教育部博士点基金(20120009110008);教育部新世纪优秀人才支持计划(NCET-12-0768).
中文摘要:

针对在许多实际应用中数据以矩阵形式而非向量形式存在的问题, 重点讨论含缺失成分的矩阵低秩逼近问题的广义版本, 即如何对一组含缺失成分的矩阵进行低秩逼近. 首先构造一个最优化问题来表达原始的广义低秩逼近问题, 该最优化问题最小化输入矩阵组中已知成分的总重构误差; 然后提出了一种迭代优化算法来求解上述的最优化问题; 最后给出详细的算法分析. 大量的模拟实验与真实图像实验结果表明, 文中算法具有较好的性能.

英文摘要:

Considering that data used in many applications are intrinsically in matrix form rather than in vector form, this paper focuses on the generalized version of the problem of a low-rank approximation of a matrix with missing components, i.e. low-rank approximations of a set of matrices with missing components. This generalized problem is formulated as an optimization problem at first, which minimizes the total reconstruction error of the known components in these matrices. Then, an iterative algorithm is designed for calculating the generalized low-rank approximations of matrices with missing components, called GLRAMMC. Finally, detailed algorithmic analysis is given. Extensive experimental results on synthetic data as well as on real image data show the effectiveness of our proposed algorithm.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机辅助设计与图形学学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国计算机学会
  • 主编:鲍虎军
  • 地址:北京2704信箱
  • 邮编:100190
  • 邮箱:jcad@ict.ac.cn
  • 电话:010-62562491
  • 国际标准刊号:ISSN:1003-9775
  • 国内统一刊号:ISSN:11-2925/TP
  • 邮发代号:82-456
  • 获奖情况:
  • 第三届国家期刊奖提名奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国工程索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:24752