该文研究具强阻尼项的Kirchhoff型方程u_(tt)-M(‖▽u‖~2)△u-△u_t+g(x,u)+h(u_t)=f(x)的初边值问题的解的长时间行为,其中M(s)=1+s~(m/2),m≥1.该文用两种方法证明上述问题对应的算子半群S(t)在相空间X=(H~2(Ω)∩H_0~1(Ω))×H_0~1(Ω)中整体吸引子的存在性,最后对抽象条件加以验证并给出具体实例.
The paper studies the longtime behavior of solutions to the initial boundary value problem(IBVP) of the Kirchhoff type equation with strong damping u_(tt)-M(||▽_u||~2)Δu-Δu_t + g(x,u) + h(u_t) = f(x),with M(s) = 1 + s~(m/2),m≥1.With two different methords,it proves that the related continuous semigroup S(t) posseses in phase space X =(H~2(Ω)∩H_0~1(Ω))×H_0~1(Ω) a global attractor.At the end of the paper,an example is shown,which indicates the existence of nonlinear functions g(x,u) and h(u_t).