位置:成果数据库 > 期刊 > 期刊详情页
基于类Haar特征和AdaBoost的车辆识别技术
  • ISSN号:1006-3080
  • 期刊名称:《华东理工大学学报:自然科学版》
  • 时间:0
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]华东理工大学信息科学与工程学院,上海200237, [2]苏州千视通视觉科技股份有限公司,江苏苏州215000
  • 相关基金:国家自然科学基金(61371150)
中文摘要:

在海量的监控视频中,快速、准确地识别车辆对公安破案和追踪具有重要的研究意义。通过提取车辆的类Haar特征,采用AdaBoost方法构建分类器可以实现监控视频中的车辆识别。针对原始算法误检率较高的问题,提出了采用背景差分去除背景干扰,以及采用目标对象差分法进行二次识别的两种改进算法。实验结果表明,两种改进算法都能够有效地降低误检率,提高检测率,并且对不同交通场景下的监控视频具有很好的检测效果。

英文摘要:

It is quite important for solving crimes and tracking the suspect to find the vehicle quickly and accurately from huge volume video records.By extracting Haar-like features and adopting AdaBoost algorithm to construct classifier,one can identify vehicle in surveillance video.Aiming at the high false alarm rate of the original algorithm,this paper proposes two improved methods:the one adopts the background difference algorithm to remove the interference of background,and the other utilizes the target object difference algorithm to achieve the second identification.Experimental results have shown that the proposed algorithms can reduce the false alarm rate and improve the detection rate.Moreover,the two algorithms have better detection results for surveillance videos in different traffic scenes.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《华东理工大学学报:自然科学版》
  • 北大核心期刊(2011版)
  • 主管单位:教育部
  • 主办单位:华东理工大学
  • 主编:刘红来
  • 地址:上海梅陇路130号
  • 邮编:200237
  • 邮箱:ecustxbbzz@ecust.edu.cn
  • 电话:021-64252666
  • 国际标准刊号:ISSN:1006-3080
  • 国内统一刊号:ISSN:31-1691/TQ
  • 邮发代号:4-382
  • 获奖情况:
  • 2001年被国家新闻出版总署评为"中国期刊方阵科技...,2002年获"第五届全国石油和化工行业优秀期刊二等奖",2004年获"全国高校优秀科技期刊二等奖",2006年荣获"首届中国高校优秀科技期刊奖"以及"第...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:10083