位置:成果数据库 > 期刊 > 期刊详情页
基于小波变换的局部形状匹配
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]南昌航空大学计算机视觉研究所,南昌330063
  • 相关基金:国家自然科学基金(No.61462065).
中文摘要:

为解决仿射变换下的局部形状匹配问题,提出了一种新的基于小波描述子的局部形状匹配方法。算法首先基于分割点将轮廓曲线分段,为了更精确地描述每段子曲线,定义一种新的特征点——等面积分割点,并在子曲线上提取,基于该特征点构造一种新的具有局部特征的小波描述子。新定义的等面积分割点有比一般的特征点(角点、拐点、切点)更精确描述曲线的特性,能解决轮廓曲线平滑特征点少而不能被精确描述的问题;定义的等面积分割点和提取的小波描述子都具有仿射不变性,且均为局部描述符,因而该方法适合于仿射变换且在轮廓局部遮挡和缺失的情况下仍然有效。理论分析和实验结果都证明了该算法的有效性。

英文摘要:

A new descriptor based on wavelet transform is proposed and used to match objects’partial shape under affine transform. The algorithm firstly partitions the contour into many sub-curve based on division points. Then, in order to describe the curve more accurately, a new feature point, namely equal area segmentation point, is defined and extracted in this paper. According to the feature points, a new local feature descriptor is constructed to act as criteria for contour. Equal area segmentation point is sampled from each sub-curve and it can be employed to describe the curve more precisely than the common feature points such as corners, points of tangency, inflection points. It can solve the problem that the smooth curve has fewer feature points so that curve can not be described precisely. The equal area segmentation points and the recognition vectors constructed by this paper are local descriptors and invariant under affine transformation. So the matching method is robust under occlusion and affine transformation. The theory analysis and experimental results have shown the algorithm is effective.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887