通过根际袋法土培试验,研究了异丙甲草胺对芹菜根际与非根际土壤酶活性、土壤微生物数量的影响以及异丙甲草胺在根际与非根际土壤中的降解特性.结果表明,异丙甲草胺对土壤过氧化氢酶活性有一定的抑制作用,对土壤脱氢酶活性有激活作用.一般情况下根际土壤酶活性均要大于非根际土壤.异丙甲草胺作用45d后,芹菜根际土壤细菌、真菌数量大于非根际土壤,根际效应R/S在1.76~2.51之间;异丙甲草胺对土壤放线菌数量影响不大,根际效应不明显.异丙甲草胺在根际土壤与非根际土壤中的降解速率分别为0.0217和0.0176,相应的半衰期分别为31.9和39.4d.在根际土壤中异丙甲草胺更易降解.
The study with rhizobag showed that in celery rhizophere and non-rhizosphere soil, metolachlor had a certain inhibitory effect on catalase activity, but stimulated dehydrogenase activity. Generally, the enzyme activities in rhizosphere soil were higher than those in non-rhizosphere soil. After 45 days of metolachlor treatment, the numbers of bacteria and fungi in rhizosphere soil were higher than those in non-rhizosphere soil, and the R/S was 1.76~2. 51. The numbers of actinomycetes were relatively stable, and the rhizosphere effect was not significant. The degradation rate of metolaehlor in rhizosphere and nonrhizosphere soil was 0.0217 and 0.0176, and the corresponding haft-live was 31.9 and 39.4 days, respectively. The degradation of metolaehlor was enhanced greatly in rhizosphere soil.