假定 G 是一个有限的组, H 是 G 的亚群。如果, H 被说 s-permutably 在 G 被嵌入为划分 |H| 的各主要的 p, H 的 Sylow p 亚群也是 G 的某 s 可变更的亚群的 Sylow p 亚群;H s-permutably 微弱地被叫如果有 G 的低于正常的亚群 T 和在 H 包含的 G 的 s-permutably 嵌入的亚群 H se,在 G 嵌入以便 G = HT 和 H T H se。在这份报纸,我们继续工作[Comm。代数学, 2009, 37:10861097 ] 学习影响 s-permutably 微弱地在有限的组的结构上嵌入亚群,并且我们扩大一些最近的结果。
Suppose that G is a finite group and H is a subgroup of G. H is said to be s-permutably embedded in G if for each prime p dividing |H|, a Sylow p-subgroup of H is also a Sylow p-subgroup of some s-permutable subgroup of G; H is called weakly s-permutably embedded in G if there are a subnormal subgroup T of G and an s-permutably embedded subgroup Hse of G contained in H such that G = HT and H n T ≤ Hse. In this paper, we continue the work of [Comm. Algebra, 2009, 37: 1086-1097] to study the influence of the weakly s-permutably embedded subgroups on the structure of finite groups, and we extend some recent results.