通过电子背散射衍射(EBSD)、电子探针(EPMA)和透射电子显微镜(TEM)研究7085铝合金在温度573-723 K、变形速率0.01-10 s^-1条件热压缩时的动态再结晶行为。结果表明,在高Zener-Hollomon(Z)值时,动态回复是主要的软化机制;随着Z参数值降低,出现动态再结晶。在ln Z=24.01(723 K,0.01 s^-1)热压缩时,动态再结晶分数最高,为10.2%。EBSD结果表明,再结晶晶粒出现在初始晶界附近,其取向与变形晶粒接近。应变诱发晶界迁移是最可能的动态再结晶机制。晶界附近的低密度Al_3Zr弥散粒子有利于应变诱发晶界迁移的发生。
The dynamic recrystallization behavior of 7085 aluminum alloy during hot compression at various temperatures (573?723 K) and strain rates (0.01-10 s^-1) was studied by electron back scattered diffraction (EBSD), electro-probe microanalyzer (EPMA) and transmission electron microscopy (TEM). It is shown that dynamic recovery is the dominant softening mechanism at high Zener?Hollomon (Z) values, and dynamic recrystallization tends to appear at low Z values. Hot compression with ln Z=24.01 (723 K, 0.01 s?1) gives rise to the highest fraction of recrystallization of 10.2%. EBSD results show that the recrystallized grains are present near the original grain boundaries and exhibit similar orientation to the deformed grain. Strain-induced boundary migration is likely the mechanism for dynamic recrystallization. The low density of Al3Zr dispersoids near grain boundaries can make contribution to strain-induced boundary migration.