提出了一种适应复杂动态环境的微粒群算法--改进的自适应微粒群算法(Improved AdaptiveParticle Swarm Optimizer,IAPSO).使用由DF1(Dynamic Function 1)生成的复杂动态环境对IAPSO算法进行了验证,并着重将IAPSO算法同APSO(Adaptive Particle Swarm Optimizer)算法进行了对比.实验结果证明,在复杂的动态环境中,IAPSO算法比APSO算法具有更好的适应性.
The purpose of this paper is to present a modified Particle Swarm Optimization(PSO) algorithm applied to the complex dynamic environment. The method presented is defined as Improved Adaptive Particle Swarm Optimizer (IAPSO). A number of experiments are performed to test the performance of the IAPSO. The environment used in the experiments is generated by Dynamic Function # 1 (DF1). The results of the experiments indicate that IAPSO is more adaptive than Adaptive Particle Swarm Optimizer(APSO).