位置:成果数据库 > 期刊 > 期刊详情页
基于核二维主成分分析算法的步态识别
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]东北电力大学自动化工程学院,吉林省吉林市132013
  • 相关基金:国家自然科学基金项目(No.60662003); 吉林省教育厅“十二五”科研规划项目(No.[2011]80); 吉林市科技计划项目(No.201162505)
中文摘要:

步态识别是一种新的生物认证技术,它是通过人的行走方式来识别人类身份的方法。为了更加快速有效地对人体步态特征进行提取和识别,采用了基于核二维主成分分析(Kernel two Dimensional Principal Component Analyses,K2DPCA)的方法进行步态特征提取,运用支持向量机(SVM)进行步态识别。根据人体步态下肢摆动距离统计出步态周期,得到步态能量图(GEI),对生成的GEI采用核二维主成分分析方法进行步态特征向量提取,采用SVM分类器进行分类识别。实验结果表明该方法具有很好的识别效果。

英文摘要:

Gait recognition is a new biometric identification technology,it is the identity of the methods to identify people by the way they walk.In this paper,in order to carry on extraction and recognition of human gait characteristics more rapidly and effectively,a method is used based on the Kernel two Dimensional Principal Component Analyses(K2DPCA)to get the gait feature extraction and Support Vector Machine(SVM)method to identify.The algorithm obtains the gait quasi-periodicity through analyzing the width information of the lower limbs’gait contour edge,and the GEI is calculated from gait period.The kernel two dimensional principal component analysis method is used to extract gait feature vector generated by the GEI,the SVM classifier is adopted to distinguish the differences.Experimental results show that the method proposed in this paper is efficient.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887