位置:成果数据库 > 期刊 > 期刊详情页
血管外给药的非线性房室模型解的逼近
  • ISSN号:1000-0887
  • 期刊名称:应用数学和力学
  • 时间:2014.9
  • 页码:1033-1045
  • 分类:O241.8[理学—计算数学;理学—数学] O242[理学—计算数学;理学—数学]
  • 作者机构:[1]陕西师范大学数学与信息科学学院,西安710062
  • 相关基金:国家自然科学基金(11171199)
  • 相关项目:综合害虫治理与Bt作物抗性管理的数学模型研究
中文摘要:

药物动力学模型的解析求解公式在新药设计特别是药物动力学参数确定等方面具有非常重要的意义.近年来,由于非线性米氏消除速率过程确定的药物动力学模型解析求解公式的获得,使得大多数单房室模型的解析解基本确定.但是,由于刻画血管外给药的非线性米氏药物动力学模型是一个非自治系统,进而不可能寻求其解析求解公式.该文的目的是讨论一次性血管外给药和周期血管外给药下非线性药物动力学模型解的逼近问题.采用微分方程和脉冲微分方程的比较定理并借助LambertW函数的定义以及相关性质给出模型的不同上下界,估计模型解的逼近程度,并通过数值模拟进行验证.

英文摘要:

The analytical solution to the pharmacokinetics model plays a key role in the design of new drugs, especially in determining the pharmacokinetic parameters. In recent years, the analytical formulae for most of the pharmacokinetics models decided by the nonlinear Michaelis-Menten elimination process, were investigated and solved. However, the pharmacokinetics model with nonlinear Michaelis-Menten elimination rate for extravascular administration was a non-autonomous system, which resulted in difficulties in seeking its analytical solutions. Therefore, the problem of approximation to the solutions to the non-autonomous nonlinear pharmacokinetics models in the cases of single or periodic extravascular administrations was adressed. Different upper and lower bounds were given based on the comparison theorems for differential equations and impulsive differential equations, with the definition and related properties of the Lambert W function employed. Numerical simulations show the effectiveness of the proposed approximation method.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《应用数学和力学》
  • 中国科技核心期刊
  • 主管单位:重庆交通大学
  • 主办单位:重庆交通大学
  • 主编:钟万勰
  • 地址:重庆南岸区重庆交通大学90信箱
  • 邮编:400074
  • 邮箱:applmathmech@cqjtu.edu.cn
  • 电话:023-62652450
  • 国际标准刊号:ISSN:1000-0887
  • 国内统一刊号:ISSN:50-1060/O3
  • 邮发代号:78-21
  • 获奖情况:
  • 国际工程索引(EI)收录期刊,我国力学类核心期刊,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国数学评论(网络版),日本日本科学技术振兴机构数据库,美国应用力学评论,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:8965