基于椭圆曲线上的双线性对提出了一个公开可验证的多秘密共享方案。仅利用双线性对的双线性性而不需要执行交互式或非交互式协议,任何一方都可以验证分发者所分发共享的有效性。该方案还是一个多秘密共享方案,在一次秘密共享过程中可以共享多个秘密。方案的安全性等价于Diffie-Hellman假设及椭圆曲线上的离散对数问题困难性。
This paper presents a publicly verifiable multi-secret sharing scheme based on bilinear pairing on elliptic curves.The validity of shares distributed by the dealer can be verified by any party only using bilinearity of bilinear pairing without implementing interactive or non-interactive protocol.What's more,the scheme is a multi-secret sharing scheme,which can share several secrets in one secret sharing process.The security of the scheme is equivalent to Diffie-Hellman assumption and the intractability of the elliptic curve discrete logarithm problem.