为了发现网络连接密度不均匀的复合网络中的社团结构,本文提出了一种利用子网间连边将节点转为向量,再对向量进行聚类,以达到发现节点中社团的方法。给出了复合网的相关定义和算法的基本思想,并根据Newman测试网络的构建规则,同时对网络连接密度不同的复合网构建复合网测试模型,并且在不同的网络连接密度下进行了多次实验。实验结果表明,本算法克服了网络连边密度不均匀问题,发现了由不同种类的节点组成的社团结构,具有较为准确的预测结果。该研究为复杂的现实网络提供一个新的思路,对发现现实网络中多类节点组成的社团结构具有实际意义。
This paper proposes an algorithm in which the nodes are expressed as vectors by the edges be- tween subnets and the community will be found by clustering the vector to find the community structure in the composite network with uneven linking density. This paper provides the definitions of composite com- plex network and the basic idea of the algorithm. In the light of Newman test network, this paper struc- tures the test network with uneven linking density and different kinds of node. The experimental result shows this algorithm successfully finds the community structure in the composite network with uneven linking density and different kinds of node. This research provides a new approach for studying the complex present network and it has practical implications to find community in real network with different kinds of node.