选择氧化催化剂通常为多组分复合氧化物.一般认为,高价过渡金属的端末双键氧(M=O)是烷烃活化的中心,而非金属端氧(NM=O)与烷烃活化无关.但近期的理论研究发现,复合氧化物中非金属端氧也可能参与烷烃活化.本文采用密度泛函方法(B3LYP)对比V=O和P=O的脱氢活性,并深入揭示二者的差异.H脱除反应可以视为是质子偶联电子传递的过程.对于V/P复合氧化物,V5+充当电子的受体,而V=O和P=O均可接受质子.由于P=O具有更强的质子化能力,导致PO–H键能比VO–H有利6–10 kcal/mol.对于烷烃活化,V=O和P=O脱氢的能垒均可与反应焓变很好地关联,但二者线性回归的截距相差6.2 kcal/mol,说明在相同的焓驱动下,P=O脱氢需要克服更高的能垒.根据Marcus模型,反应的能垒不仅取决去反应焓变,还与内部重组能有关.计算表明,在脱氢过程中,P=O需克服的重组能为128–140 kcal/mol,比V=O过程高出21–23 kcal/mol.这很好地解释了前面的计算结果.应该指出的是,除了反应热力学驱动和重组能外,在势能曲线相交处的电子耦合作用(?HAB?)亦对能量有一定的影响.丁烷选择氧化制顺酐可能经过2-丁烯,丁二烯,2,5-二氢呋喃和丁烯酸内酯等一系列中间体,共有8个H原子在反应过程中需要脱除.对于丁烷的脱氢,P=O的能垒仅比V=O低1.3 kcal/mol,说明初始反应时二者是竞争的.但对于2-丁烯和2,5-二氢呋喃,二者活化能的差距增加为6–7 kcal/mol,说明这时P=O脱氢将占主导.而对丁烯酸内酯活化,二者活化能的差异又缩小到2.5 kcal/mol,表明V=O又具有一定的竞争力.事实上,这种能垒的差异与端氧的亲核性密切相关.P=O更具亲核性,因此有利于被更具酸性的C–H键进攻.根据Evens的估计,烷烃C–H键的p Ka为50左右,而烯丙基性C–H为43.这就很好地解释了为什么2-丁烯和2,5-二氢呋喃更容易和P=O发生反应,而丁烷脱氢二者差异不大的原?
We carried out DFT calculations on the activation of C–H bonds on V/P mixed oxides. A set of oxo clusters, V4?xPxO 10(x = 0–4), used as model catalysts showed that the PO–H bond was stronger than the VO–H bond and the proton was preferentially bonded to the P=O bond. However, for alkane activation, the P=O was not the active site as expected because the activation requires a large reorganization energy. In addition, the results showed that the P=O bond played a role in the activation of intermediates with a more acidic C–H bond, such as 2-butene and 2,5-dihydrofuran.