位置:成果数据库 > 期刊 > 期刊详情页
基于贝叶斯决策的运动目标检测方法
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]兰州交通大学电子与信息工程学院,兰州730070
  • 相关基金:国家自然科学基金(the National Natural Science Foundation of China under Grant No.60962004).
中文摘要:

传统混合高斯背景建模存在难以解决背景复杂以及阴影等因素影响视频运动目标检测效果的问题,为此提出了一种基于贝叶斯决策的运动目标检测方法。该方法利用帧间差分进行像素变化检测,将像素粗分为变化像素和非变化像素;对于变化像素中的运动点和静止点,通过统计确立有效的数据结构,其中显著颜色分布统计量用来描述静止点,而显著颜色同现统计量描述运动点;从数据结构中提取颜色特征矢量,将特征矢量中的静止点和运动点按照贝叶斯决策规则进一步分类为背景点、前景点和颜色相似点。对颜色相似点进行局部加权处理以达到正确检测的目的;通过融合静止点集、运动点集和加权后的颜色相似点集结果提取出前景运动目标。仿真实验表明,该方法能够在不同复杂背景下较准确地检测出视频中的运动目标,相比传统算法具有较强的鲁棒性。

英文摘要:

For the purpose to improve the moving objects detection performance of the traditional Gaussian background mod- eling under the complex background, shadow, the method for moving objects detection based on Bayesian decision theory is proposed.The changed and unchanged pixels are classified using temporal difference.For the stationary and moving points among the changed pixels,effective data structure is established,where the statistics of most significant colors are used to describe the stationary parts of the background, and that of most significant color co-occurrences are used to describe the motion objects of the background.The stationary and moving pixels among the color feature vectors, which are extracted from the data structure, are further classified as background points, foreground points and the color similarity points by Bayesian decision theory.For the similar color pixels, local weighting is adopted to detect the moving objects accttrately.Foreground moving objects are extracted by combining the results of the stationary, motion and similar color pixels set.Experiments show that this method can accurately detect the moving objects under different complex background, and is robustness compared with traditional method.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887