采用高功率脉冲磁控溅射与直流磁控溅射并联的复合高功率脉冲磁控溅射技术,研究直流磁控溅射部分耦合直流电流变化对Ti靶在Ar气氛中放电及等离子体特性的影响.采用表面轮廓仪、扫描探针显微镜、X射线衍射与纳米压痕仪对Ti薄膜厚度、结构特征以及力学性能进行表征.结果表明:耦合直流电流增加,靶平均功率增加,脉冲作用期间靶电流降低,等离子体电子密度增加;在耦合直流电流为2.0A时,等离子体电子密度和电子温度获得较大值,分别为2.98 V和0.93 eV;耦合直流电流增加,Ti薄膜沉积速率近似线性增加,粗糙度增加,硬度和弹性模量略有降低;相同靶平均功率时,采用复合高功率脉冲磁控溅射技术制备Ti薄膜与采用传统直流磁控溅射技术相比,沉积速率相当;靶平均功率650W时复合高功率脉冲磁控溅射所制Ti薄膜比传统直流磁控溅射所制Ti薄膜更加光滑,平均粗糙度降低1.32 nm,力学性能更加优异,硬度提高2.68GPa.
Hybrid high power impulse magnetron sputtering (HIPIMS) is a new-generation HIPIMS technique with a pulse and dirrect current power supply parallelled connection operation. In this work, the influence of dirrect current from 0 to 4.0 A supplied by the dirrect current power is investigated on hybrid HIPIMS Ti discharge characteristics, plasma parameters (plasma potential, electron temperature and electron density) and Ti film properties in an Ar atmosphere. The results show that target voltage and current are characterized by a peak with variation of time in different dirrect currents. Although the target voltage is barely affected, the target current decreases with increasing the dirrect current during the pulse turn-on stage. The plasma parameters determined by a Langmuir probe have been significantly influenced by the dirrect current. Moreover, the deposition rate and average roughness increase while the hardness and elastic modulus have a slight decrease with the variation of dirrect current from 1.0 to 3.0 A. The samples are selected for comparison with that prepared by conventional direct current magnetron sputtering (DCMS) at the same average target power 650 and 1500 W. The results demonstrate that Ti films using hybrid HIPIMS have a close deposition rate and a superior quality and performance to those prepared using DCMS especially at the low target power 650 W when the direct current is 1.0 A.